I really don't get this equation and I could really use some help. Anyone think they can help me out?
Find an integer c such that the equation 4x^3 + cx -27 = 0 has a double root?
if the roots are equal:
c^2-4*4*(-27)=0
or, c^2+4*4*27=0
or, c^2=(-4*4*27)
or, c=sqrt(-4*4*27)=4*3*sqrt(-3)
or, c=12*(sqrt 3)*i which is the answer.
I want to remind you that it is absolutely impossible to find the exact value of c since x is also unknown.To determine one quantity in quadartic equation with two unknown values is impossible.I think you got it?
Reply:4x^3 + cx - 27 = 0
(x-a)(x-a)(x-b) = 0
(x² - 2ax + a²)(x - b) = 0
x³ - bx² - 2ax² + 2abx + a²x - a²b = 0
Multiply of 4 to match the coefficients of x³
4x³ - 4bx² - 8ax² + 8abx + 4a²x - 4a²b = 0
Compare the coefficients of the powers of x
x²: -4b - 8a = 0
4b = -8a
b = -2a
x: 8ab + 4a² = c
-16a² + 4a² = c
c = -12a²
x^0: -4a²b = -27
8a³ = -27
(2a)³ = -3³
2a = -3
a = -3/2
c = -12(-3/2)²
c = -12 * 9/4
= -27
Reply:(2x - a)²(x - b) = 4x³ + 0x² + cx - 27
4x³ - 4bx² - 4ax² + a²x - a²b = 4x³ + 0x² + cx - 27
-4b - 4a = 0
b = -a
-a²b = -27
a²b = 27
a²(-a) = 27
a³ = -27
a = -3
b = -(-3) = 3
(2x - a)²(x - b) =
(2x + 3)²(x - 3) =
4x³ -27x - 27 = 0
c = -27
4x³ -27x - 27 = 0
Has a root at 3 and a double root at -3/2
Reply:(x-a)^2 (4x+b) = 4x^3 + cx - 27
(x^2 - 2ax + a^2)(4x+b) = 4x^3 +cx - 27
................ x^2 - 2ax + a^2
X... ....... ...........4x+b
____________________________
........... .... b x^2 - 2a b x + a^2 b
...4x^3 - 8 a x^2 + 4 a^2
_____________________________
4x^3+ (b-8a)x^2+(4a^2 - 2ab)x + a^2 b
a^2 b = - 27
b-8a = 0
4a^2 - 2ab = c
b = 8a
Hence a^2 * 8a = - 27
a^3 = -27/8
a = -3/2
b = 8a = -12
Since 4x - 12 = 4(x-3), then 3 is a root.
And
4a^2 - 2ab = c
c = 4*(-3/2)^2 - 2(-3/2)(-12)
c = 9 - 36
c = -27
Let's now check these results
............ 4...........0............ -27......... -27
-3.................... -12 ......... 36... ...... .27
............ 4........ -12............ 9............ 0
-3/2 .................. 6 ......... ..-9
............ 4......... -6.............. 0
-3/2 .............. .. 6
........... 4 ......... 0
Nice exercise
Ana
marguerite
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment